
Chapter 17

Spark SQL Shuffled Hash Join

Spark official documentation does not provide any documentation regarding

shuffled hash join. What does that mean? That means there is no function

contract, neither functional nor other aspects such as performance, when

to use, and when to avoid. That leaves the data engineer with informal

references such as the reference I will use now [5]:

« The Shuffle Hash Join is one of the join algorithms used in Apache Spark

to combine data from two different DataFrames or datasets. It’s designed to

perform efficient joins by partitioning and hashing the data. »

The above quoted information from that reference, contradicts the following

information from another reference [5]:

« According to SPARK-11675 Shuffled Hash Join was removed in Spark 1.6

and the reason was:

“. . . I think we should just standardize on sort merge join for large joins for

now, and create better implementations of hash joins if needed in the future“.

181 354

https://issues.apache.org/jira/browse/SPARK-11675


Ali Hassan - PhD Spark Performance

. . . Shuffled Hash Join was reintroduced in Spark 2.0 according to SPARK-

13977.

. . . It’s worth mentioning the PR for SPARK-13977 which points that Shuffled

Hash Join was removed in favor of Sort Merge Join which is faster and more

robust. »

17.1 The Catastrophic Abstraction

The only honest description that I can use after the above text is: abstraction

should never be like that. Let us go back to the original idea of software

abstraction in [50], and in section 15.3. Specifically figure 15.3. Spark sql hash

join breaks all rules of correct abstraction by not providing documentation

at all, but at the same time, providing configuration that is ‘passed by’ in

the formal documentation. Moreover, and on the other level, spark suggests,

in his formal documentation, spark suggest to fine-tune spark SQL join for

optimal performance! while spark sql join is not scalable as we proved in

this book 1.

I have seen many experienced data engineers asking, young candidates in

interviews, asking questions such as:

How to speedup spark join, when you have two very large tables?

And they force the poor young engineer to enter into an endless discussion
1As the kind reader knows we speek about optimal performance in the context of speedup, which
is the measure of scalability. For non-scalable applications, we do not advise users to try to
change things to improve speedup, because it does not exist.

182 354

https://issues.apache.org/jira/browse/SPARK-13977
https://issues.apache.org/jira/browse/SPARK-13977


Ali Hassan - PhD Spark Performance

of spark configurations and hints.

They do that because spark official documentation does that and neglect the

world-wide-accepted fact shown figure 15.3.

Regardless of our opinion, hash-join still exist in spark, as an option. I will

benchmark spark ShuffledHashJoin in the next section 17.2.

183 354



Ali Hassan - PhD Spark Performance

17.2 Benchmark Spark SQL Shuffled Hash Join

We will repeat usecase-two from section 14.1 for shuffled hash join. Input

tables are presented in listing 14.1. Scala spark code is modified to include

the shuffled hash join hint as presented in listing 17.1.

Listing 17.1: Scala spark code for shuffled hash join benchmark.

def testDataFrameJoin()(implicit session: SparkSession) = {

myPrintln("testDataFrameJoin ... SHUFFLE_HASH ...")

val trainDF = session.read.parquet("/user/warehouse/large/train.parquet")

val trainWithUuidDF =

session

.read

.parquet("/user/warehouse/large/trainWithUuid.parquet")

val columnsNamesPostfixed: List[String] =

trainWithUuidDF.columns.map{columnName =>

s"${columnName}_wUuid")

}.toList

val trainWithUuidDfRenamed =

trainWithUuidDF.toDF(columnsNamesPostfixed: _*)

val resultDF = trainDF.hint("SHUFFLE_HASH").join(trainWithUuidDfRenamed,

trainDF("weight") === trainWithUuidDfRenamed("weight_wUuid") &&

trainDF("feature_00") === trainWithUuidDfRenamed("feature_00_wUuid"),

"inner")

resultDF.write.save("/user/warehouse/large/result.parquet")

}

184 354



Ali Hassan - PhD Spark Performance

17.3 Usecase Running & Results

We execute the benchmark using spark-submit in listing 17.2. Results are

shown in table 17.1.

Listing 17.2: Spark submit command for shuffled hash join benchmark.

spark-submit --class fr.hp.cluster.performance.SortLoadForSpark \

--master yarn \

--deploy-mode client \

--num-executors 1 \

--conf spark.sql.join.preferSortMergeJoin=false \

--conf spark.sql.autoBroadcastJoinThreshold=2 \

--conf spark.sql.shuffledHashJoinFactor=1 \

/home/unified-hp-user/DATA/jars/hp-spark-performance-assembly-1.0.jar

Number of
executors

Time elapsed in
minutes
sort merge join

Time elapsed in
minutes
hash join

1 Fail Fail

4 47 44

6 41 42

12 42 38

16 41 40

Table 17.1: Results for shuffled hash join benchmark.

Results presented in table 17.1 show that elapsed time benchmark for both

SortMergeJoin and ShuffledHashJoin are close. There is no performance edge

185 354



Ali Hassan - PhD Spark Performance

in-favor-of neither of them. However, SortMergeJoin is the default algorithm

by Spark. So we recommend using it. We recommend not touching the spark

configuration related ninetieth to hints nor to other extra configurations

seen in listing 17.2.

Another important remark is the fail case for one executor. Please see

figure 17.1. This is clearly either the OOM problem or the OOS problem

that have been extensively explained throughout of this book. Please see

section 23.4.

Figure 17.1: Execution-fail shuffled hash join for one executor. OOM problem or OOS problem?
I will let the kind reader answer this question.

We do not think there is neither feasibility usecase nor performance usecase

that will make shuffled hash join a must-use approach. As result, we think

that the data engineer should not involve in understanding these three dif-

ferent SQL join algorithms. Also, the data engineer should not provide hints

in relation to these algorithms, nor configurations. The only configuration

the data engineer should provide in this context is the number of execu-

186 354



Ali Hassan - PhD Spark Performance

tors. We should calculate the minimum number of executors as directed in

section 30.3.

187 354



Ali Hassan - PhD Spark Performance

17.4 Discussion

In this part we have extensively presented SPARK SQL library. We have

shown how to avoid OOM problem clearly. During this road, we bench-

marked and analyzed the three spark SQL join strategies and concluded

that we should not go into their details. Spark SQL library is a valuable

library. We all use it and we all appreciate it. We should always appreciate

the fact that SQL transformations are not-scalable yet feasible. Feasibility

has a golden value as we demonstrated in many places in this book.

Finally, we conclude from this part that spark is auto-configured. We should

not break its valuable optimized execution plan that he generate it automati-

cally. If we want to best benefit from spark, we should let him manage his

internal details and resources, and we focus on the functional aspects of our

application using the novel spark performance model that we present in this

book.

188 354


