Chapter 17

Spark SQL Shuffled Hash Join

Spark official documentation does not provide any documentation regarding
shuffled hash join. What does that mean? That means there is no function
contract, neither functional nor other aspects such as performance, when
to use, and when to avoid. That leaves the data engineer with informal
references such as the reference I will use now [5]:

« The Shuffle Hash Join is one of the join algorithms used in Apache Spark
to combine data from two different DataFrames or datasets. It’s designed to

perform efficient joins by partitioning and hashing the data. »

The above quoted information from that reference, contradicts the following
information from another reference [J5]:

« According to SPARK-11675 Shuffled Hash Join was removed in Spark 1.6
and the reason was:

“...I think we should just standardize on sort merge join for large joins for

now, and create better implementations of hash joins if needed in the future®,

181 354

https://issues.apache.org/jira/browse/SPARK-11675

Ali Hassan - PhD ‘ Spark Performance

...Shuffled Hash Join was reintroduced in Spark 2.0 according to SPARK+

13977:

...It’s worth mentioning the PR for SPARK-13977 which points that Shuffled
Hash Join was removed in favor of Sort Merge Join which is faster and more

robust. »

17.1 The Catastrophic Abstraction

The only honest description that I can use after the above text is: abstraction
should never be like that. Let us go back to the original idea of software
abstraction in [50], and in section[15.3] Specifically figure[15.3] Spark sql hash
join breaks all rules of correct abstraction by not providing documentation
at all, but at the same time, providing configuration that is ‘passed by’ in
the formal documentation. Moreover, and on the other level, spark suggests,
in his formal documentation, spark suggest to fine-tune spark SQL join for
optimal performance! while spark sql join is not scalable as we proved in

this book[1

I have seen many experienced data engineers asking, young candidates in
interviews, asking questions such as:

How to speedup spark join, when you have two very large tables?

And they force the poor young engineer to enter into an endless discussion

! As the kind reader knows we speek about optimal performance in the context of speedup, which
is the measure of scalability. For non-scalable applications, we do not advise users to try to
change things to improve speedup, because it does not exist.

182 354

https://issues.apache.org/jira/browse/SPARK-13977
https://issues.apache.org/jira/browse/SPARK-13977

Ali Hassan - PhD | Spark Performance

of spark configurations and hints.
They do that because spark official documentation does that and neglect the
world-wide-accepted fact shown figure

Regardless of our opinion, hash-join still exist in spark, as an option. I will

benchmark spark ShuffledHashJoin in the next section[17.2}

183 354

Ali Hassan - PhD ‘ Spark Performance

17.2 Benchmark Spark SQL Shuffled Hash Join

We will repeat usecase-two from section [14.1]for shuffled hash join. Input
tables are presented in listing Scala spark code is modified to include
the shuffled hash join hint as presented in listing

Listing 17.1: Scala spark code for shuffled hash join benchmark.

def testDataFrameJoin() (implicit session: SparkSession) = {
myPrintln()
val trainDF = session.read.parquet()
val trainWithUuidDF =
session
.read
.parquet()
val columnsNamesPostfixed: List[String] =
trainWithUuidDF.columns.map{columnName
s)
}.tolList
val trainWithUuidDfRenamed =
trainWithUuidDF.toDF(columnsNamesPostfixed: _x)

val resultDF = trainDF.hint().join(trainWithUuidDfRenamed,
trainDF() trainWithUuidDfRenamed ()
trainDF() trainWithUuidDfRenamed (Do
)
resultDF.write.save()

184 354

Ali Hassan - PhD ‘ Spark Performance

17.3 Usecase Running & Results

We execute the benchmark using spark-submit in listing Results are
shown in table

Listing 17.2: Spark submit command for shuffled hash join benchmark.

spark-submit --class fr.hp.cluster.performance.SortLoadForSpark \
--master yarn \
--deploy-mode client \
--num-executors 1 \
--conf spark.sql.join.preferSortMergeJoin=false \
--conf spark.sql.autoBroadcastJoinThreshold=2 \
--conf spark.sql.shuffledHashJoinFactor=1 \
/home/unified-hp-user/DATA/jars/hp-spark-performance-assembly-1.0.jar

Number of | Time elapsed in | Time elapsed in
executors minutes minutes
sort merge join | hash join
1 Fail Fail
4 47 44
6 41 42
12 42 38
16 41 40

Table 17.1: Results for shuffled hash join benchmark.

Results presented in table show that elapsed time benchmark for both

SortMergeJoin and ShuffledHashJoin are close. There is no performance edge

185 ‘ 354

Ali Hassan - PhD | Spark Performance

in-favor-of neither of them. However, SortMergeJoin is the default algorithm
by Spark. So we recommend using it. We recommend not touching the spark

configuration related ninetieth to hints nor to other extra configurations

seen in listing

Another important remark is the fail case for one executor. Please see
figure This is clearly either the OOM problem or the OOS problem
that have been extensively explained throughout of this book. Please see

section

SPEAC o0 [0S Sages Somge Envionment Erccvors SaL/DataFrame HP-Cluster application

Spark Jobs (7
npuser

Fo

Exccutor 4 adced

Succeeded
Falled
Running

cave st BigPicture soala 3 (Job &)

2050 2055 2100 2105 2110 218 2120 0% 2130 2138 2140 °" 2145 z150 2158 © 2200
Fii 4 Aprl

~ Completed Jobs (4)

page: 1Pages. Jumpto| 1 Show 100 emsinapage. Go

Jobld'v Description Submitted Duration stages: Tasks

2025/04/04 20:48:29 33min n 124/124 (60 failed)

2025/04/04 20:48:28 13min ”n 93/93

20804104 904871 n6s n an

Figure 17.1: Execution-fail shuffled hash join for one executor. OOM problem or OOS problem?
I will let the kind reader answer this question.

We do not think there is neither feasibility usecase nor performance usecase
that will make shuffled hash join a must-use approach. As result, we think
that the data engineer should not involve in understanding these three dif-
ferent SQL join algorithms. Also, the data engineer should not provide hints
in relation to these algorithms, nor configurations. The only configuration

the data engineer should provide in this context is the number of execu-

186 354

Ali Hassan - PhD ‘ Spark Performance

tors. We should calculate the minimum number of executors as directed in

section

187 354

Ali Hassan - PhD ‘ Spark Performance

17.4 Discussion

In this part we have extensively presented SPARK SQL library. We have
shown how to avoid OOM problem clearly. During this road, we bench-
marked and analyzed the three spark SQL join strategies and concluded
that we should not go into their details. Spark SQL library is a valuable
library. We all use it and we all appreciate it. We should always appreciate
the fact that SQL transformations are not-scalable yet feasible. Feasibility

has a golden value as we demonstrated in many places in this book.

Finally, we conclude from this part that spark is auto-configured. We should
not break its valuable optimized execution plan that he generate it automati-
cally. If we want to best benefit from spark, we should let him manage his
internal details and resources, and we focus on the functional aspects of our
application using the novel spark performance model that we present in this

book.

188 354

